Average velocities are always described with 2 points in time. Example: "Find the average velocity from 4 to 6 seconds."

Finding Average Velocity

The average velocity is found by:

- Finding the 2 points on the curve at the 2 points in time, $\mathrm{t}_{1} \& \mathrm{t}_{2}$.
- Draw a line between the two points.
- Find the slope of the line. The slope is the average velocity.

Finding Average Velocity

The average velocity is found by:

$$
v_{\mathrm{AVG}}=\frac{v_{\mathrm{FINAL}}-v_{\text {INITIAL }}}{2}
$$

From a v vs t graph:

- Read the two velocities from the vertical axis.
- Add them up.
- Divide by 2.

The average velocity is found by calculating the "AREA" between the curve and the axis from t1 to t2.

INSTANTANEOUS velocities are always described with 1 point in time. Example: "Find the velocity at 6 seconds."

Finding Instantaneous Velocity

Finding Instantaneous Velocity

Time (t)
The instantaneous velocity is the slope at that point in time.
(If you are given a curve find the slope of a tangent line.)

Read the graph's vertical axis at time \mathbf{t}.

Finding Acceleration

Since

$$
\text { Acceleration }=\frac{\Delta \text { Velocity }}{\Delta \text { time }}
$$

and the slope of this graph equals the velocity, acceleration is the where the slope changes. This occurs on the curved regions.

Segments "A" and " C " are regions of acceleration.

Segments B, D \&E are constant velocities.

To calculate the acceleration, find the slope.

Straight lines are regions of CONSTANT
ACCELERATIONS.
Line segments B, C, D, E, \& F are constant accelerations.
" A " is a changing acceleration because the slope changes.
" B " and " D " are constant accelerations but have an value of ZERO.

Read the graph at time, t .

